Abstract

Lung cancer is a common and highly malignant tumor. Although lung cancer treatments continue to advance, conventional therapies are limited and the response rate of patients to immuno-oncology drugs is low. This phenomenon raises an urgent need to develop effective therapeutic strategies for lung cancer. In this study, we genetically modified human primary CD8+ T cells and obtained antitumor extracellular vesicles (EVs) from them. The engineered EVs, containing interlekin-2 and the anti-epidermal growth factor receptor (EGFR) antibody cetuximab on their surfaces, exhibited direct cytotoxicity against A549 human lung cancer cells and increased cancer cell susceptibility to human peripheral blood mononuclear cell-mediated cytotoxicity. In addition, the engineered EVs specifically targeted the lung cancer cells in an EGFR-dependent manner. Taken together, these findings show that surface engineering of cytokines and antibodies on CD8+ T cell-derived EVs not only enhances their antitumor effects but also confers target specificity, suggesting a potential of modifying the immune cell-derived EVs in cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call