Abstract
In this work, engineered biochar decorated layered double hydroxides and cellulose nanocrystals (B–CuFe–CNC) biocomposites were synthesized by the facile ultrasonicated-co-precipitation technique. The biocomposite was investigated for purification of Eriochrome Black T (EBT) dye from water. The characterization results showed that the presence of CNC in biochar-layered double hydroxides resulted in a two-dimensional rod-like structure with excellent crystallinity, improved surface functionalities, and provides an attractive platform for the enhanced adsorption of azo anionic dye molecules. The adsorption system was appropriately demonstrated by the BBD-RSM (R2 > 0.994). The biocomposite exhibited higher EBT adsorption in the acidic pH range (2–5) due to strong electrostatic and chemical interactions. The kinetic and isotherm results were well demonstrated by pseudo-second order, Freundlich, and Redlich Peterson models. The maximum adsorption capacity of biocomposite was 876.2 mg/g achieved within 45 min. The spectroscopic analyses imply that the high removal of EBT by biocomposite is mainly governed by electrostatic attraction, hydrogen bonding, and chemical/metal complexation mechanisms. The biocomposite maintained high EBT removal after six successive adsorption cycles and excellent dye adsorption in the different water matrices. The results suggest that tailoring biochar properties with layered double hydroxide and CNC is a promising way for the enhanced removal of dye contaminants from wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.