Abstract
Photonic devices are cutting-edge optical materials that produce narrow, intense beams of light, but their synthesis typically requires toxic, complex methodology. Here we employ a synthetic biology approach to produce environmentally-friendly, living microlenses with tunable structural properties. We engineered Escherichia coli bacteria to display the silica biomineralization enzyme silicatein from aquatic sea sponges. Our silicatein-expressing bacteria can self-assemble a shell of polysilicate "bioglass" around themselves. Remarkably, the polysilicate-encapsulated bacteria can focus light into intense nanojets that are nearly an order of magnitude brighter than unmodified bacteria. Polysilicate-encapsulated bacteria are metabolically active for up to four months, potentially allowing them to sense and respond to stimuli over time. Our data demonstrate that engineered bacterial particles have the potential to revolutionize the development of multiple optical and photonic technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.