Abstract

BackgroundThe most abundant human milk oligosaccharide in breast milk, 2′-fucosyllactose (2′-FL), has been approved as an additive to infant formula due to its multifarious nutraceutical and pharmaceutical functions in promoting neonate health. However, the low efficiency of de novo synthesis limits the cost-efficient bioproduction of 2′-FL.ResultsThis study achieved 2′-FL de novo synthesis in a generally recognized as safe (GRAS) strain Bacillus subtilis. First, a de novo biosynthetic pathway for 2′-FL was introduced by expressing the manB, manC, gmd, wcaG, and futC genes from Escherichia coli and Helicobacter pylori in B. subtilis, resulting in 2′-FL production of 1.12 g/L. Subsequently, a 2′-FL titer of 2.57 g/L was obtained by reducing the competitive lactose consumption, increasing the regeneration of the cofactor guanosine-5′-triphosphate (GTP), and enhancing the supply of the precursor mannose-6-phosphate (M6P). By replacing the native promoter of endogenous manA gene (encoding M6P isomerase) with a constitutive promoter P7, the 2′-FL titer in shake flask reached 18.27 g/L. The finally engineered strain BS21 could produce 88.3 g/L 2′-FL with a yield of 0.61 g/g lactose in a 3-L bioreactor, without the addition of antibiotics and chemical inducers.ConclusionsThe efficient de novo synthesis of 2′-FL can be achieved by the engineered B. subtilis, paving the way for the large-scale bioproduction of 2′-FL titer in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.