Abstract

Gadolinium zirconate (GZ) is considered as a promising top coat candidate for high temperature TBC applications. Suspension plasma spray has shown the capability to generate a wide range of microstructures including the desirable columnar microstructure. In this study, two different TBC architectures were deposited using the axial suspension plasma spray. The first variation was a triple layered TBC comprising of thin YSZ base layer beneath a relatively porous GZ intermediate layer and a dense GZ top layer. The second variation was a composite TBC architecture of GZ and YSZ comprising of thin YSZ base layer and GZ+YSZ top layer. Cross sectional SEM analysis of the layered and composite TBCs revealed a columnar microstructure. The porosity content of the deposited TBCs was measured using two methods (Image Analysis and Water Intrusion). The as-sprayed TBCs were exposed at 900°C for 8h to a corrosive salt environment consisting of a mixture of vanadium pentoxide and sodium sulfate. XRD analysis on the as-corroded TBCs top surface showed the presence of gadolinium vanadate in both the layered and the composite TBCs. SEM/EDS analysis of the top surface and the cross-section of the layered and composite TBCs after hot corrosion test revealed the infiltration of the molten salts through the columnar gaps. The composite TBC showed a lower hot corrosion induced damage compared to the layered TBC where a considerable spallation was observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call