Abstract

Regulatory T cells (Tregs) are a subset of T cells responsible for the regulation of immune responses, thereby maintaining immune homeostasis and providing immune tolerance to both self and non-self-antigens. An increasing number of studies revealed Treg numbers and functions in a variety of autoimmune diseases. Treg deficiency can cause the development of several autoimmune skin diseases including vitiligo, alopecia areata, pemphigoid and pemphigus, psoriasis, and systemic sclerosis. Many clinical trials have been performed for autoimmune conditions using polyclonal Tregs, but efficiency can be significantly improved using antigen-specific Tregs engineered using T cell receptor (TCR) or chimeric antigen receptor (CAR) constructs. In this review, we systematically reviewed altered frequencies, impaired functions, and phenotypic features of Tregs in autoimmune skin conditions. We also summarized new advances in TCR and CAR based antigen-specific Tregs tested both in animal models and in clinics. The advantages and limitations of each approach were carefully discussed emphasizing possible clinical relevance to patients with autoimmune skin diseases. Moreover, we have reviewed potential approaches for engineering antigen-specific Tregs, and strategies for overcoming possible hurdles in clinical applications. Thereby, antigen-specific Tregs can be infused using autologous adoptive cell transfer to restore Treg numbers and to provide local immune tolerance for autoimmune skin disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.