Abstract

The pH diversification has been proved as an important factor affecting the self-assembly of spidroin. Herein, we constructed a novel spider silk protein (NT-MaSp1s-CT) with the pH-dependent secondary structures, containing pH-sensitive N-terminal, C-terminal domains and a repeated core region with merely 191 amino acids. Then pH sensitivity of NT-MaSp1s-CT was detected at different pH conditions and NT-MaSp1s-CT displayed pH-dependent conformational transitions consistent with rational designed objective. Besides, the micelles theory was employed to inquiry the assembly mechanism of NT-MaSp1s-CT in high concentration spinning dope. As expected, NT-MaSp1s-CT protein can be spun into continuous and uniform fibers with the pH ranging from 2 to 11, which is the largest pH boundary for artificial spider silk formation, simplifying the assembly conditions and paving a broad path for spinning process. Moreover, the hemolysis and cytotoxicity of NT-MaSp1s-CT fibers were also determined and the novel fibers exhibit excellent biocompatibility, providing wider potential applications in the biomedical and pharmaceutical fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call