Abstract

The pH diversification has been proved as an important factor affecting the self-assembly of spidroin. Herein, we constructed a novel spider silk protein (NT-MaSp1s-CT) with the pH-dependent secondary structures, containing pH-sensitive N-terminal, C-terminal domains and a repeated core region with merely 191 amino acids. Then pH sensitivity of NT-MaSp1s-CT was detected at different pH conditions and NT-MaSp1s-CT displayed pH-dependent conformational transitions consistent with rational designed objective. Besides, the micelles theory was employed to inquiry the assembly mechanism of NT-MaSp1s-CT in high concentration spinning dope. As expected, NT-MaSp1s-CT protein can be spun into continuous and uniform fibers with the pH ranging from 2 to 11, which is the largest pH boundary for artificial spider silk formation, simplifying the assembly conditions and paving a broad path for spinning process. Moreover, the hemolysis and cytotoxicity of NT-MaSp1s-CT fibers were also determined and the novel fibers exhibit excellent biocompatibility, providing wider potential applications in the biomedical and pharmaceutical fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.