Abstract
A new algorithm for assessment of Engine Health Monitoring (EHM) data in aircraft is proposed. The diagnostic tool quantifies step changes, shifts and trends in EHM data by means of a transformation that aggregates concurrent readings of EHM data into a single fuzzy state. A Genetic Fuzzy System is used to detect the occurance of a specific trend of interest in the sequence of states. The activation of the rules is represented in a 2D map by means of an extension of the Radviz visualization algorithm to fuzzy data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.