Abstract

Sequential actions of 17beta-estradiol (E(2)) and progesterone (P(4)) in the hypothalamus and the P(4) metabolite, 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP), in the midbrain ventral tegmental area (VTA) respectively mediate the initiation and intensity of lordosis of female rats and may also modulate anxiety and social behaviors, through actions in these, and/or other brain regions. Biosynthesis of E(2), P(4), and 3alpha,5alpha-THP can also occur in brain, independent of peripheral gland secretion, in response to environmental/behavioral stimuli. The extent to which engaging in tasks related to reproductive behaviors and/or mating increased E(2) or progestin concentrations in brain was investigated. In Experiment 1, proestrous rats were randomly assigned to be tested in individual tasks, including the open field, elevated plus maze, partner preference, social interaction, or no test control, in conjunction with paced mating or no mating. Engaging in paced mating, but not other behaviors, significantly increased dihydroprogesterone (DHP) and 3alpha,5alpha-THP levels in midbrain, hippocampus, striatum, and cortex. In Experiment 2, proestrous rats were tested in the combinations of the above tasks (open field and elevated plus maze, partner preference, and social interaction) with or without paced mating. As in Experiment 1, only engaging in paced mating increased DHP and 3alpha,5alpha-THP concentrations in midbrain, hippocampus, striatum, and cortex. Thus, paced mating enhances concentrations of 5alpha-reduced progestins in brain areas associated with reproduction (midbrain), as well as exploration/anxiety (hippocampus and striatum) and social behavior (cortex).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.