Abstract

The progressive cutting based on auxiliary paths is an effective machining method for the material accumulating region inside the mould pocket. But the method is commonly based on the radial depth of cut as the control parameter, further more there is no more appropriate adjustment and control approach. The end-users often fail to set the parameter correctly, which leads to excessive tool load in the process of actual machining. In order to make more reasonable control of the machining load and tool-path, an engagement angle modeling method for multiple-circle continuous machining is presented. The distribution mode of multiple circles, dynamic changing process of engagement angle, extreme and average value of engagement angle are carefully considered. Based on the engagement angle model, numerous application techniques for mould pocket machining are presented, involving the calculation of the milling force in multiple-circle continuous machining, and rough and finish machining path planning and load control for the material accumulating region inside the pocket, and other aspects. Simulation and actual machining experiments show that the engagement angle modeling method for multiple-circle continuous machining is correct and reliable, and the related numerous application techniques for pocket machining are feasible and effective. The proposed research contributes to the analysis and control tool load effectively and tool-path planning reasonably for the material accumulating region inside the mould pocket.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call