Abstract
This paper tackles the problem of downlink data transmission in massive multiple-input multiple-output (MIMO) systems where user equipments (UEs) exhibit high spatial correlation and channel estimation is limited by strong pilot contamination. Signal subspace separation among UEs is, in fact, rarely realized in practice and is generally beyond the control of the network designer (as it is dictated by the physical scattering environment). In this context, we propose a novel statistical beamforming technique, referred to as <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">MIMO covariance shaping</i> , that exploits multiple antennas at the UEs and leverages the realistic non-Kronecker structure of massive MIMO channels to target a suitable shaping of the channel statistics performed at the UE-side. To optimize the covariance shaping strategies, we propose a low-complexity block coordinate descent algorithm that is proved to converge to a limit point of the original nonconvex problem. For the two-UE case, this is shown to converge to a stationary point of the original problem. Numerical results illustrate the sum-rate performance gains of the proposed method with respect to spatial multiplexing in scenarios where the spatial selectivity of the base station is not sufficient to separate closely spaced UEs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.