Abstract
Photomagnetic compounds are usually achieved by assembling preorganized individual molecules into rationally designed molecular architectures via the bottom-up approach. Here we show that a magnetic response to light can also be enforced in a nonphotomagnetic compound by applying mechanical stress. The nonphotomagnetic cyano-bridged Fe(II)-Nb(IV) coordination polymer {[Fe(II)(pyrazole)4]2[Nb(IV)(CN)8]·4H2O}n (FeNb) has been subjected to high-pressure structural, magnetic and photomagnetic studies at low temperature, which revealed a wide spectrum of pressure-related functionalities including the light-induced magnetization. The multifunctionality of FeNb is compared with a simple structural and magnetic pressure response of its analog {[Mn(II)(pyrazole)4]2[Nb(IV)(CN)8]·4H2O}n (MnNb). The FeNb coordination polymer is the first pressure-induced spin-crossover photomagnet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.