Abstract

We study the boundary control of solutions of the Helmholtz and Maxwell equations to enforce local non-zero constraints. These constraints may represent the local absence of nodal or critical points, or that certain functionals depending on the solutions of the PDE do not vanish locally inside the domain. Suitable boundary conditions are classically determined by using complex geometric optics solutions. This work focuses on an alternative approach to this issue based on the use of multiple frequencies. Simple boundary conditions and a finite number of frequencies are explicitly constructed independently of the coefficients of the PDE so that the corresponding solutions satisfy the required constraints. This theory finds applications in several hybrid imaging modalities: some examples are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.