Abstract

Access control is used in databases to prevent unauthorized retrieval and tampering of stored data, as defined by policies. Various policy models provide different protections and guarantees against illegal accesses, but none is able to offer a universal fit for all access control needs. Therefore, the static nature of access control mechanisms deployed in commercial databases limit the security guarantees provided. They require time-consuming and error-prone efforts to adapt access control policies to evolving security contexts. In contrast, we propose a fully automated and agile approach to access control enforcement in relational databases. We present tractable algorithms that enforce any policy expressible using the high-level syntax of the Authorization Specification Language. This includes complex policies involving information flow control or user history dependencies. Our method does not require any modification to the database schema or user queries, thus allowing for a transparent implementation in existing systems. We demonstrate our findings by formulating two classic access control models: the Bell-LaPadula model and the Chinese Wall policy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.