Abstract

The basis for the hyperexcitability and seizure activity associated with enflurane anaesthesia was investigated using extracellular and intracellular recording in rat hippocampal brain slices. Enflurane produced seizure-like burst discharges in CA1 pyramidal neurones, accompanied by depressed field potential amplitudes and a reduced threshold for synaptically evoked population spikes. However, threshold for action potentials evoked by intracellular current injection did not change, nor did action potential amplitude, duration or spike frequency accommodation in single neurones. Enflurane 2.0 vol% hyperpolarized CA1 neurones (3.1 (SD 1.3)mV), decreased membrane conductance (12 (6)% below control), and depressed EPSP amplitudes (34% of control) (P less than 0.01). Enflurane appeared to enhance both intrinsic and synaptically mediated inhibitory potentials. The N-methyl-D-aspartate (NMDA) receptor antagonist amino-phosphonovalerate (APV) 5-20 mumol litre-1 completely blocked seizure-like burst discharge of CA1 neurones in the presence of enflurane, and the enflurane-induced reduction of population spike threshold; it did not alter anaesthetic depression of EPSP amplitude. Thus enflurane-induced burst discharge of CA1 neurones appeared to involve an enhancement of excitatory synaptic transmission rather than depression of intrinsic or synaptic inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.