Abstract

We have developed a new variant of depth-sensitive x-ray diffraction technique to study structural parameters in inhomogeneous polycrystalline materials. In this method, diffraction patterns are measured at different x-ray energies which are varied by small steps, and then the depth-resolved structural characteristics are retrieved from the energy-dependent x-ray diffraction data. In the current articles, this approach is applied to extract preferred orientation with depth resolution. In the case of uniaxial preferred orientation, the analytical algorithm has been developed based on March functions. Application of this technique to seashells allowed us to characterize the microstructure evolution in the nacre layer. Near the inner surface, adjacent to the mollusk mantle, the nacre consists of well-defined lamellas which reveal a high degree of the (001)-preferred orientation. This preferred orientation deteriorates in depth due to the accumulation of cracks and other imperfections. The texture distribution is characterized quantitatively by depth-dependent March parameters, which allows us to compare samples taken from different shells. In a similar way, energy-variable x-ray diffraction can be used for nondestructive characterization of a very broad spectrum of laminated structures and composite materials and systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.