Abstract

In this paper, we investigate joint beamforming for energy-throughput tradeoff in a sustainable cloud radio access network system, where multiple base stations (BSs) powered by independent renewable energy sources will collaboratively transmit wireless information and energy to the data receiver and the energy receiver simultaneously. In order to obtain the optimal joint beamforming design over a finite time horizon, we formulate an optimization problem to maximize the throughput of the data receiver while guaranteeing sufficient RF charged energy of the energy receiver. Although such problem is non-convex, it can be relaxed into a convex form and upper bounded by the optimal value of the relaxed problem. We further prove tightness of the upper bound by showing the optimal solution to the relaxed problem is rank one. Motivated by the optimal solution, an efficient online algorithm is also proposed for practical implementation. Finally, extensive simulations are performed to verify the superiority of the proposed joint beamforming strategy to other beamforming designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.