Abstract

The finite-element method (FEM) enables the use of ldquoadaptedrdquo meshes. The simultaneous combination of h (local variations in element size) and p (local variations in the polynomial order of approximation) refinements, i.e., hp-adaptivity, is the most powerful and flexible type of adaptivity. In this paper, two versions of a fully automatic hp-adaptive FEM for electromagnetics are presented. The first version is based on minimizing the energy-norm of the error. The second, namely the goal oriented strategy, is based on minimizing the error of a given (user-prescribed) quantity of interest. The adaptive strategy delivers exponential convergence rates for the error, even in the presence of singularities. The hp adaptivity is presented in the context of 2-D analysis of H -plane rectangular waveguide discontinuities. Stabilized variational formulations and H(curl) FEM discretizations in terms of quadrilaterals of variable order of approximation supporting anisotropy and hanging nodes are used. Comparison of energy-norm and goal-oriented hp-adaptive strategies in the context of waveguiding problems is provided. Specifically, the scattering parameters of the discontinuity are used as goal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.