Abstract
Residual-type a posteriori error estimates in the energy norm are given for singularly perturbed semilinear reaction-diffusion equations posed in polygonal domains. Linear finite elements are considered on anisotropic triangulations. The error constants are independent of the diameters and the aspect ratios of mesh elements and of the small perturbation parameter. The case of the Dirichlet boundary conditions was considered in the recent article (Kopteva, Numer. Math., 2017, Published online 2 May 2017. doi:10.1007/s00211-017-0889-3). Now we extend this analysis to also allow boundary conditions of Neumann type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.