Abstract

A rotationless formulation of multibody dynamics is presented, which is especially beneficial to the design of energy-momentum conserving integration schemes. The proposed approach facilitates the stable numerical integration of the differential algebraic equations governing the motion of both open-loop and closed-loop multibody systems. A coordinate augmentation technique for the incorporation of rotational degrees of freedom and associated torques is newly proposed. Subsequent to the discretization, size-reductions are performed to lower the computational costs and improve the numerical conditioning. In this connection, a new approach to the systematic design of discrete null space matrices for closed-loop systems is presented. Two numerical examples are given to evaluate the numerical properties of the proposed algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.