Abstract
We measured the dependence of the energy gap in Bridgman-grown Cd1−xMnxTe crystals, 0≤x≤0.25, on the Mn mole fraction and temperatures from 40 to 300 K. We determined the Mn mole fraction and energy gap, respectively, from electron probe microanalysis and near-infrared Fourier-transform infrared transmission spectra. The energy gap increased linearly with an increase in the Mn content in the crystal and with a decrease in temperature. We formulated new equations from these experimental results, wherein we expressed the energy gap as a function of Mn mole fraction and temperature. Also, we compare our findings with published results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.