Abstract

In reflection electron microscopy (REM) and reflection high energy electron diffraction (RHEED) the average path length of the elastically scattered electrons in the crystal ranges from 10 -100 nm and a significant portion of the electrons in the RHEED pattern spots used for imaging is inelastically scattered. The excitations of surface plasmons, bulk plasmons and valence electrons involves energy losses of 10 ∽30 eV. Thus the image contrast and resolution in REM are degraded due to chromatic aberration of the objective lens. The use of energy filters in a TEM should offer significant improvement in resolution and contrast of REM images. We present here some new results on the investigation of resolution limit and contrast mechanisms in energy filtered REM images.The experiments were performed on a Zeiss 912 TEM fitted with an Omega magnetic imaging energy filter. Digital RHEED patterns and REM images were acquired into 1024 pixels by 1024 pixels via a Gatan 679 CCD camera fitted to the microscope.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.