Abstract

In recent years, multiple Voltage Frequency Island (VFI)-based designs have increasingly made their way into both commercial and research multicore platforms. On the other hand, the wireless Network-on-Chip (WiNoC) architecture has emerged as an energy-efficient and high bandwidth communication backbone for massively integrated multicore platforms. It becomes therefore possible to exploit the small-world effects induced by the wireless links of a WiNoC to achieve efficient inter-VFI data exchanges. In this work, we demonstrate that WiNoCs can provide better latency and energy profiles compared to traditional mesh-like architecture for VFI-partitioned multicore designs. The performance gains and energy efficiency are achieved due to the low-power wireless shortcuts in conjunction with the small-world architecture. Indeed, our experimental results show energy improvements as large as 40% for multithreaded application benchmarks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call