Abstract

Due to its controllable maneuverability, wide coverage, and low cost, unmanned aerial vehicle (UAV) has great potential in post-disaster rescue, cargo transport and emergency communication. Considering its limited onboard energy, energy-efficient UAV communication is a challenge. This research examines the security of simultaneous wireless information and power transfer (SWIPT) systems assisted by intelligent reflecting surfaces (IRS) and UAVs while considering the flight energy of rotary-wing UAVs. Specifically, an IRS is mounted on a UAV to enhance the quality of legitimate transmission, and artificial noise (AN) is introduced into the base station (BS) to reduce eavesdropping quality. The power splitting (PS) technology is adopted at ground devices (GDs) to simultaneously decode information and harvest energy. First, we jointly design the BS transmit beamforming, UAV-IRS phase shifts and trajectory/velocity as well as GDs PS ratio with the aim of maximizing the sum secrecy rate of all GDs. Then, an iterative algorithm is developed to address the formulated problem. In particular, additional variables are introduced to handle this complicated objective function, and the original problem is decoupled into multiple sub-problems, which can be solved alternately by invoking the successive convex approximation (SCA) and semidefinite relaxation (SDR) techniques. Finally, numerical results demonstrate that the proposed scheme exhibits a substantial performance in the security rate of SWIPT systems assisted by UAV-IRS, and its performance is improved by at least 12% compared to benchmark schemes at the flight energy budget ethr=5KJ and the number of reflecting elements Nr=25.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.