Abstract

Designing energy-efficient scheduling algorithms on heterogeneous distributed systems is increasingly becoming the focus of research. State-of-the-art works have studied scheduling by combining dynamic voltage and frequency scaling (DVFS) technology and turning off the appropriate processors to reduce dynamic and static energy consumptions. However, the methods for turning off processors are ineffective. In this study, we propose a novel method to assign priorities to processors for facilitating effective selection of turned-on processors to decrease static energy consumption. An energy-efficient scheduling algorithm based on bisection (ESAB) is proposed on this basis, and this algorithm directly turns on the most energy-efficient processors depending on the idea of bisection to reduce static energy consumption while dynamic energy consumption is decreased by using DVFS technology. Experiments are performed on fast Fourier transform, Gaussian elimination, and randomly generated parallel applications. Results show that our ESAB algorithm makes a better trade-off between reducing energy consumption and low computation time of task assignment (CTTA) than existing algorithms under different scale conditions, deadline constraints, and degrees of parallelism and heterogeneity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call