Abstract

This paper explores the energy-efficient scheduling of real-time tasks on a non-ideal DVS processor in the presence of resource sharing. We assume that tasks are periodic, preemptive and may access to shared resources. When dynamic-priority and fixed-priority scheduling are considered, we use the earliest deadline first (EDF) algorithm and the rate monotonic (RM) algorithm to schedule the given set of tasks. Based on the stack resource policy (SRP), we propose an approach, called blocking-aware two-speed (BATS) algorithm, to synchronize the tasks with shared resources and to calculate appropriate execution speeds so that the shared resources can be accessed in a mutual exclusive manner and the energy consumption can be reduced. Particularly, BATS uses a static low speed to execute tasks initially, and then it switches to a high speed dynamically whenever a task blocks a higher priority task. More specifically, the processor runs at the high speed from the beginning of the blocking until the deadline of the blocked task or the processor becomes idle. In order to guarantee that the deadlines of tasks are met, the static low speed and the dynamic high speeds are derived based on the theoretical analysis of the schedulability of tasks. Compared with existing work, BATS achieves more energy saving because its dynamic high speeds are lower than that of existing work and the processor has less chance to execute tasks at the high speeds. The schedulability analysis and the properties of our proposed BATS are provided in this paper. We also evaluated the capabilities of BATS by a series of experiments, for which we have some encouraging results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call