Abstract

The recent advancements in wireless sensor hardware ensures sensing multiple sensor data such as temperature, pressure, humidity, etc. using a single hardware unit, thus defining it as multi-sensor data communication in wireless sensor networks (WSNs). The in-processing technique of data aggregation is crucial in energy-efficient WSNs; however, with the requirement of end-to-end data confidentiality it may prove to be a challenge. End-to-end data confidentiality along with data aggregation is possible with the implementation of a special type of encryption scheme called privacy homomorphic (PH) encryption schemes. This paper proposes an optimized PH encryption scheme for WSN integrated networks handling multi-sensor data. The proposed scheme ensures light-weight payloads, significant energy and bandwidth consumption along with lower latencies. The performance analysis of the proposed scheme is presented in this paper with respect to the existing scheme. The working principle of the multi-sensor data framework is also presented in this paper along with the appropriate packet structures and process. It can be concluded that the scheme proves to decrease the payload size by 56.86% and spend an average energy of 8-18 mJ at the aggregator node for sensor nodes varying from 10-50 thereby ensuring scalability of the WSN unlike the existing scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.