Abstract

In this paper, the downlink of cell-free massive multiple-input multiple-output (MIMO) with zero-forcing processing is considered. To maximize the system energy efficiency (EE), we design power allocation algorithms taking into account imperfect channel state information, hardware, and backhaul power consumption. The total EE optimization problem is nonconvex, which traditionally is solved by the successive convex approximation framework which involves second order cone programs (SOCPs). As such methods have high complexity, the run time is extremely long, especially in large-scale systems with thousands of access points (APs) and users. To overcome this problem, in this paper, we propose to apply two computationally efficient methods, namely proximal gradient (PG) method and accelerated proximal gradient (APG) method to solve the considered problem. Numerical results show that, compared to the conventional SOCPs approximation methods, our proposed methods achieve the same performance while the run time is much smaller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.