Abstract

The paper considers the problem of minimizing the energy used to transmit packets over a wireless link via lazy schedules that judiciously vary packet transmission times. The problem is motivated by the following observation. With many channel coding schemes, the energy required to transmit a packet can be significantly reduced by lowering transmission power and code rate and therefore transmitting the packet over a longer period of time. However, information is often time-critical or delay-sensitive and transmission times cannot be made arbitrarily long. We therefore consider packet transmission schedules that minimize energy subject to a deadline or a delay constraint. Specifically, we obtain an optimal offline schedule for a node operating under a deadline constraint. An inspection of the form of this schedule naturally leads us to an online schedule which is shown, through simulations, to perform closely to the optimal offline schedule. Taking the deadline to infinity, we provide an exact probabilistic analysis of our offline scheduling algorithm. The results of this analysis enable us to devise a lazy online algorithm that varies transmission times according to backlog. We show that this lazy schedule is significantly more energy-efficient compared to a deterministic (fixed transmission time) schedule that guarantees queue stability for the same range of arrival rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.