Abstract

Edge computing provides a promising paradigm to support the implementation of industrial Internet of Things (IIoT) by offloading computational-intensive tasks from resource-limited machine-type devices (MTDs) to powerful edge servers. However, the performance gain of edge computing may be severely compromised due to limited spectrum resources, capacity-constrained batteries, and context unawareness. In this chapter, we consider the optimization of channel selection which is critical for efficient and reliable task delivery. We aim at maximizing the long-term throughput subject to long-term constraints of energy budget and service reliability. We propose a learning-based channel selection framework with service reliability awareness, energy awareness, backlog awareness, and conflict awareness, by leveraging the combined power of machine learning, Lyapunov optimization, and matching theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.