Abstract
The fifth generation mobile communication (5G) systems can provide Gbit/s data rates from massive multiple-input multiple-output (MIMO) combined with the emerging use of millimeter wavelengths in small heterogeneous cells. This paper develops an energy-efficiency based multi-user hybrid beamforming for downlink millimeter wave (mmWave) massive MIMO systems. To make better use of directivity gains of the analog beamforming and flexible baseband processing of the digital beamforming, this paper proposes the analog beamforming to select the optimal beam which can maximize the power of the objective user and minimize the interference to all other users. In addition, the digital beamforming maximizes the energy efficiency of the objective user with zero-gradient-based approach. Simulation results show the proposed algorithm provide better bit error rate (BER) performance compared with the traditional hybrid beamforming and obviously improved the sum rate with the increase in the number of users. It is proved that multi-user MIMO (MU-MIMO) can be a perfect candidate for mmWave massive MIMO communication system. Furthermore, the analog beamforming can mitigate the inter-user interference more effectively with the selection of the optimal beam and the digital beamforming can greatly improve the system performance through flexible baseband processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of China Universities of Posts and Telecommunications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.