Abstract

The question of how the scattering cross section changes when the spectra of the colliding nuclei have low-excitation particle-emitting resonances is explored using a multichannel algebraic scattering method. As a test case, the particle-unstable nucleus $^{8}\mathrm{Be}$ has been considered as a target. Nucleon-nucleus scattering cross sections, as well as the spectra of the compound nuclei formed, have been determined from calculations that consider, as well as those that disregard, particle-emission widths of the target nuclear states. The resonant character of the unstable excited states introduces a problem because the low-energy tails of these resonances can intrude into the subthreshold, bound-state region. This unphysical behavior needs to be corrected by modifying, in an energy-dependent way, the shape of the target resonances from the usual Lorentzian form. The resonance function must smoothly reach zero at the elastic threshold. We explore herein a way of achieving this condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call