Abstract

We present results of calculations based on the Skyrme energy density functional including the arbitrary mixing between protons and neutrons. In this framework, single-particle states are superpositions of proton and neutron components and the energy density functional is fully invariant with respect to three-dimensional rotations in the isospin space. The isospin of the system is controlled by means of the isocranking method, which carries over the standard cranking approach to the isospin space. We show numerical results of the isocranking calculations performed for isobaric analogue states in the A=14 and $A=40-56$ nuclei. We also present such results obtained for high-isospin states in $^{48}$Cr, with constraints on the isospin implemented by using the augmented Lagrange method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.