Abstract

We perform a statistical analysis of deterministic energy-decreasing algorithms on mean-field spin models with complex energy landscape like the Sine model and the Sherrington Kirkpatrick model. We specifically address the following question: in the search of low energy configurations is it convenient (and in which sense) a quick decrease along the gradient (greedy dynamics) or a slow decrease close to the level curves (reluctant dynamics)? Average time and wideness of the attraction basins are introduced for each algorithm together with an interpolation among the two and experimental results are presented for different system sizes. We found that while the reluctant algorithm performs better for a fixed number of trials, the two algorithms become basically equivalent for a given elapsed time due to the fact that the greedy has a shorter relaxation time which scales linearly with the system size compared to a quadratic dependence for the reluctant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.