Abstract

Damage localization of damaged structures is an important issue in structural health monitoring. In data-based methods based on statistical pattern recognition, it is necessary to extract meaningful features from measured vibration signals and utilize a reliable statistical technique for locating damage. One of the challenging issues is to extract reliable features from non-stationary vibration signals caused by ambient excitation sources. This article proposes a new energy-based method by using ensemble empirical mode decomposition and Mahalanobis-squared distance to obtain energy-based multivariate features and locate structural damage under ambient vibration and non-stationary signals. The main components of the proposed method include extracting intrinsic mode functions of vibration signals by ensemble empirical mode decomposition, choosing adequate and optimal intrinsic mode functions, partitioning the selected intrinsic mode functions at each sensor into segments with the same dimensions, calculating the intrinsic mode function energy at each segment, preparing energy-based multivariate features at each sensor, computing Mahalanobis-squared distance values, and obtaining a vector of average Mahalanobis-squared distance quantities of all sensors. The major contributions of the proposed method consist of proposing an innovative non-parametric strategy for feature extraction, presenting generalized Pearson correlation function for the selection of optimal intrinsic mode functions, using a simple and effective segmentation algorithm, and applying energy-based features to the process of damage localization. The main advantage of the proposed method is its great applicability to locating single and multiple damage cases. The measured vibration responses of the well-known IASC-ASCE structure are applied to verify the effectiveness and reliability of the proposed energy-based method along with several comparative studies. Results will demonstrate that this approach is highly capable of locating damage under stationary and non-stationary vibration signals attributable to ambient excitations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call