Abstract
Virtual network embedding, which means mapping virtual networks requested by users to a shared substrate network maintained by an Internet service provider, is a key function that network virtualization needs to provide. Prior work on virtual network embedding has primarily focused on maximizing the revenue of the Internet service provider and did not consider the energy cost in accommodating such requests. As energy cost is more than half of the operating cost of the substrate networks, while trying to accommodate more virtual network requests, minimizing energy cost is critical for infrastructure providers. In this paper, we make the first effort toward energy-aware virtual network embedding. We first propose an energy cost model and formulate the energy-aware virtual network embedding problem as an integer linear programming problem. We then propose two efficient energy-aware virtual network embedding algorithms: a heuristic-based algorithm and a particle-swarm-optimization-technique-based algorithm. We implemented our algorithms in C++ and performed side-by-side comparison with prior algorithms. The simulation results show that our algorithms significantly reduce the energy cost by up to 50% over the existing algorithm for accommodating the same sequence of virtual network requests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.