Abstract

The Internet of Things (IoT) is spreading much faster than the speed at which the supporting technology is maturing. Today, there are tens of wireless technologies competing for IoT and a myriad of IoT devices with disparate capabilities and constraints. Moreover, each of many verticals employing IoT networks dictates distinctive and differential network qualities. In this work, we present a context‐aware framework that jointly optimises the connectivity and computational speed of the IoT network to deliver the qualities required by each vertical. Based on a smart port application, we identify energy efficiency, security, and response time as essential quality features and consider a wireless realisation of IoT connectivity using short range and long‐range technologies. We propose a reinforcement learning technique and demonstrate significant reduction in energy consumption while meeting the quality requirements of all related applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.