Abstract

The need to establish a secure communication for most applications of Internet of Things (IoT) has become increasingly crucial. Nevertheless, one of the major issues of such networks is how to establish cryptographic keys between all IoT objects to ensure secure data exchange. Several key management schemes have been suggested in the literature to achieve this goal, but they must be revised and innovated, while taking into account the limited resources of IoT objects. Likewise, the IoT presents a system where objects belonging to the physical world, are connected to the Internet, and have the capacity to measure, communicate, and act around all over the world. Nevertheless, some information available to IoT objects is private, hence the need to ensure an access control whose aim is to guarantee that the information be accessible only to those whose the access is allowed. In this paper, we propose a scheme involving two basic modules, namely key management, and access control. The key management module is designed to ensure both the generation and storage of symmetric keys for IoT objects in a completely distributed manner without resorting to a central authority. In contrast, the access control module is used to impose an access control policy so as to prevent unauthorized access to services provided by a particular IoT object. The latter is ensured thanks to the existing cooperation between the TGOs servers of different domains in the IoT. Through assessments based on security analysis, we demonstrate that the proposed scheme is more secure than the existing ones. Simulations were also performed to validate the proposed solution by comparing it with some relevant concurrent schemes. The obtained results are not only encouraging, but also very favorable for the proposed scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call