Abstract

Shrinking transistor geometries, aggressive voltage scaling and higher operating frequencies have negatively impacted the dependability of embedded multiprocessor systems-on-chip (MPSoCs). Fault-tolerance and energy efficiency are the two most desired features of modern-day MPSoCs. For most of the multimedia applications, task communication energy constitutes more than 40% of the overall application energy. In this paper, an integer linear programming (ILP) based approach is proposed to reduce the communication energy and fault-tolerant migration overhead of throughput-constrained multimedia applications modeled using synchronous data flow graphs (SDFGs). The ILP is solved at compile-time for all fault-scenarios to generate task-core mappings satisfying an application throughput requirement. These mappings are stored in a table which is looked up at run-time as and when faults occur. Experiments conducted with real and synthetic applications demonstrate that the proposed technique reduces communication energy by an average 40% and migration overhead by 33% as compared to the existing fault-tolerant techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.