Abstract

As cloud computing is expected to expand rapidly in the coming years, the large-scale computing and data centers are becoming more and more widespread in the world. Energy consumption of these distributed systems has become a urgent problem and received much attention. Application Scheduling can alleviate this problem by reducing the number of running nodes and effectively maximizing total system efficiency. This paper focuses on scheduling applications in large-scale data centers using genetic algorithm. Specifically, we present the design and implementation of the cost function, the modification of the genetic operators and the choice of the data transition weight. The algorithm is studied via simulation and implementation in a large-scale data center. Test results and performance discussion justify the feasibility of the scheduling algorithm. From the results, we know that the proposed application scheduling method can be useful in practice, which can reduce the running nodes and minimize the cost of data transferred among the nodes efficiently.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.