Abstract

Rising energy consumption in coming decades, combined with a changing energy mix, have the potential to increase the impact of energy sector water use on freshwater biodiversity. We forecast changes in future water use based on various energy scenarios and examine implications for freshwater ecosystems. Annual water withdrawn/manipulated would increase by 18–24%, going from 1,993,000–2,628,000 Mm3 in 2010 to 2,359,000–3,271,000 Mm3 in 2035 under the Reference Case of the Energy Information Administration (EIA). Water consumption would more rapidly increase by 26% due to increased biofuel production, going from 16,700–46,400 Mm3 consumption in 2010 to 21,000–58,400 Mm3 consumption in 2035. Regionally, water use in the Southwest and Southeast may increase, with anticipated decreases in water use in some areas of the Midwest and Northeast. Policies that promote energy efficiency or conservation in the electric sector would reduce water withdrawn/manipulated by 27–36 m3GJ−1 (0.1–0.5 m3GJ−1 consumption), while such policies in the liquid fuel sector would reduce withdrawal/manipulation by 0.4–0.7 m3GJ−1 (0.2–0.3 m3GJ−1 consumption). The greatest energy sector withdrawal/manipulation are for hydropower and thermoelectric cooling, although potential new EPA rules that would require recirculating cooling for thermoelectric plants would reduce withdrawal/manipulation by 441,000 Mm3 (20,300 Mm3 consumption). The greatest consumptive energy sector use is evaporation from hydroelectric reservoirs, followed by irrigation water for biofuel feedstocks and water used for electricity generation from coal. Historical water use by the energy sector is related to patterns of fish species endangerment, where water resource regions with a greater fraction of available surface water withdrawn by hydropower or consumed by the energy sector correlated with higher probabilities of imperilment. Since future increases in energy-sector surface water use will occur in areas of high fish endemism (e.g., Southeast), additional management and policy actions will be needed to minimize further species imperilment.

Highlights

  • In the United States (US), the energy sector is responsible for more than half of all water withdrawals [1]

  • Historical water use by the energy sector is related to patterns of fish species endangerment, where water resource regions with a greater fraction of available surface water withdrawn by hydropower or consumed by the energy sector correlated with higher probabilities of imperilment

  • We present three scenarios of water use, based upon energy production scenarios developed by the US Energy Information Administration (EIA)

Read more

Summary

Introduction

In the United States (US), the energy sector is responsible for more than half of all water withdrawals [1]. Concerns about energy security and the environmental impacts of energy production are leading policymakers to change the incentives and regulations that govern the energy sector. The US has made significant investments in subsidizing biofuel production, incentivizing new renewable electric generation capacity, and funding research into developing commercially viable technologies for carbon capture and storage (CCS) of emissions from fossil fuels, coal [4].

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.