Abstract

The so-called energy-corrected coupled-cluster method with singles and doubles (CCSD), which is closely related to the recently proposed method of moments of Kowalski and Piecuch, accounts for the nondynamic correlation effects, which are missing in the standard single-reference CCSD, by projecting onto the modest-size multireference (MR) configuration-interaction SD (CISD) wave function when evaluating the energy, rather than onto the single-determinantal CCSD reference. The ability of this approach to generate reliable potential energy curves (PECs) or surfaces over a wide range of geometries is examined using a realistic ab initio model of the HF molecule. The PECs obtained with the correlation-consistent polarized valence double (triple, quadruple) zeta cc-pVXZ (T,Q) basis sets are used, together with the PEC extrapolated to the complete basis set limit, to compute the rotational and vibrational levels, which are then compared with the experimentally determined values as well as with the directly measured vibrational frequencies. A comparison is also made with the earlier results [X. Li, J. Mol. Struct.: THEOCHEM 547, 69 (2001)] that were obtained with the amplitude-corrected CCSD method, namely the so-called reduced MR CCSD that exploits the same MR CISD wave function, as well as with recently published renormalized CCSD(T) results [P. Piecuch et al., J. Chem. Phys. 115, 5796 (2001)]. It is shown that both the amplitude- and energy-corrected CCSD PECs may be used to generate highly accurate and reliable spectroscopic data once the basis set limit is achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.