Abstract

We study the effect of the initial-state energy variance to the short-time behavior of the Loschmidt echo (LE) in a purely dephasing model. We find that the short-time LE behaves as a Gaussian function with the width determined by the initial-state energy variance of the interaction Hamiltonian, while it is a quartic decaying function with the width determined by the initial-state energy variance of the commutator between the interaction Hamiltonian and the environmental Hamiltonian when the initial state is an eigenstate of the interaction Hamiltonian. Furthermore, the Gaussian envelope in the temporal evolution of LE in strong coupling regime is determined by the inband variance. We will also verify the above conclusion in the XY spin model (as environment).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.