Abstract
This study investigated the metabolizable energy (ME) intake, net energy of production (NEp), heat production (HP), efficiencies of ME use for energy, lipid and protein retention as well as the performance of broiler chickens fed diets based on cassava chips or pellets with or without supplementation with an enzyme product containing xylanase, amylase, protease and phytase. The two products, cassava chips and pellets, were analysed for nutrient composition prior to feed formulation. The cassava chips and pellets contained 2.2% and 2.1% crude protein; 1.2% and 1.5% crude fat; and 75.1% and 67.8% starch, respectively. Lysine and methionine were 0.077%, 0.075%, and 0.017%, 0.020% protein material, respectively, while calculated ME was 12.6 and 11.7 MJ/kg, respectively. Feed intake to day 21 was lower (p<0.01) on the diet containing cassava chips compared to diets with cassava pellets. Enzyme supplementation increased (p<0.01) feed intake on all diets. Live weight at day 21 was significantly (p<0.01) reduced on the diet based on cassava chips compared to pellets, but an improvement (p<0.01) was noticed with the enzyme supplementation. Metabolizable energy intake was reduced (p<0.01) by both cassava chips and pellets, but was increased (p<0.01) on all diets by enzyme supplementation. The NEp was higher (p<0.01) in the maize-based diets than the diets containing cassava. Enzyme supplementation improved (p<0.01) NEp in all the diets. Heat production was highest (p<0.01) on diets containing cassava pellets than on cassava chips. It is possible to use cassava pellets in diets for broiler chickens at a level close to 50% of the diet to reduce cost of production, and the nutritive value of such diets can be improved through supplementation of enzyme products containing carbohydrases, protease, and phytase.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.