Abstract

Energy efficiency in high-density urban areas is increasingly gaining more attention as the energy crisis and environmental issues worsen. Urban morphology is an essential factor affecting the energy consumption and solar energy development potential of buildings. In response to the research gap of previous studies that only analyzed building energy consumption or solar energy potential from a single objective, this paper aims to combine the two objectives of block-scale building energy consumption and solar development potential to explore the joint influence of urban residential morphological elements on correlations between the two. By investigating and summarizing 100 sample cases of Wuhan city blocks, 30 urban residential block prototypes were constructed. The correlations between the leading morphological indicators of the blocks with the building energy consumption and solar energy potential of the residential prototypes were quantified, respectively. The study results show that at certain floor area ratios, the highest solar power generation can be achieved with a mixture of high-rise slabs and high-rise towers, but the building energy intensity level is relatively high; combining building energy consumption and solar power generation, the residential block form of high-rise towers and low-rise villas has incredible energy-saving potential. In addition, the regression analysis results show that three block form indicators, namely the roof-to-envelope area ratio, compacity, and site coverage, have the most prominent influence on building energy intensity and solar power generation, and they all show positive correlations. This study can provide suggestions for urban residential planners and managers to promote urban energy conservation at the design stage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.