Abstract

Thermal transport in condensed matter systems is traditionally formulated as a response to a background gravitational field. In this work, we seek a twisted-boundary-condition formalism for thermal transport in analogy to the U(1) twisted boundary condition for electrical transport. Specifically, using the transfer matrix formalism, we introduce what we call the energy-twisted boundary condition, and study the response of the system to the boundary condition. As specific examples, we obtain the thermal Meissner stiffness of (1+1)-dimensional CFT, the Ising model, and disordered fermion models. We also identify the boost deformation of integrable systems as a bulk counterpart of the energy-twisted boundary condition. We show that the boost deformation of the free fermion chain can be solved explicitly by solving the inviscid Burgers equation. We also discuss the boost deformation of the XXZ model, and its nonlinear thermal Drude weights, by studying the boost-deformed Bethe ansatz equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.