Abstract

We study the transmission of electric energy through a circular cylindrical elastic shell by acoustic wave propagation and piezoelectric transducers. Our mechanics model consists of a circular cylindrical elastic shell with finite piezoelectric patches on both sides of the shell. A theoretical analysis using the equations of elasticity and piezoelectricity is performed. A trigonometric series solution is obtained. Output voltage and transmitted power are calculated. Confinement and localization of the vibration energy (energy trapping) is studied which can only be understood from analyzing finite transducers. It is shown that when thickness-twist mode is used the structure shows energy trapping with which the vibration can be confined to the transducer region. It is also shown that energy trapping is sensitive to the geometric and physical parameters of the structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.