Abstract

Defect mode induced energy trapping at the bandgap frequency of a phononic crystal has been widely explored. Unlike this extensively used mechanism, this work reports the use of nonreciprocity in the transmission band to trap energy inside a phononic crystal cavity. Passive nonreciprocity is due to natural viscosity of the background liquid (water) and asymmetry of aluminum scatterers. The level of non-resonant energy trapping was compared for three cavities with different symmetry. Enhancement of energy trapping at a frequency of 624 kHz was observed experimentally for the cavity where nonreciprocity suppresses acoustic radiation into environment. Experimental results were further investigated and confirmed using finite element numerical analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call