Abstract

A novel approach to modeling ocean wave scattering in the marginal ice zone that uses the coherent potential approximation to compute the energy transport velocity is reported. The necessary theory is developed by considering sea ice floes to be thin elastic beams governed by the Euler‐Bernoulli equation, with the open water surrounding each floe subject to the same equation with its material coefficients set to be very small quantities. This mathematical stratagem facilitates the solution of the problem and yields interesting results about the speed at which wave energy propagates through a marginal ice zone, the dispersion relation for a random mixture of ice floes and water, and the mean free path or attenuation coefficient. Results from the model are compared with data reported by Wadhams et al. [1988].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call