Abstract

Improved modeling tools are needed for self-consistent simulation of photon and carrier transport in emerging photonic devices. Here we introduce the method of optical admittances to simplify the calculation of Green's functions and interference effects of energy transport in the recently introduced quantized fluctuational electrodynamics framework. Our approach enables a straightforward analytical method to calculate e.g. the local and nonlocal densities of states in photonic resonators. Furthermore, the resulting wave-optical treatment of emission enhancement and photon recycling can be coupled with drift-diffusion simulations using the so-called interference-exact radiative transfer equations to provide a full-device model of optical and electrical energy transport in arbitrary multilayer structures. We expect the presented framework to enable detailed new studies of emerging photonic devices based on e.g. thin-film technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.